
10/2/22, 5:54 AM JSON in PostgreSQL (Part 1: Setup and Measurement) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/5e365c57048 1/4

JSON in PostgreSQL (Part 1: Setup and
Measurement)
Observations on JSONB insert elasticity

I was wondering about the JSON document insert performance in PostgreSQL and the
extent it varies with document size.

Overview
PostgreSQL supports JSON as a data type and I was curious how insert performance
changes with the size of a JSON document being inserted. To get an impression to the
extent insert performance changes with document size, I am inserting three different sizes
of documents and measure performance using pgbench.

Implementation: table and operations
The following shows the table definition of the table that receives the insert statements.

Schema

The schema is a single table, with a primary key (UUID), the time it was inserted

(TIMESTAMP) and the document itself (JSONB).

CREATE TABLE IF NOT EXISTS json_schema.json_document
 (

 document_identifier UUID PRIMARY KEY,
 time_inserted TIMESTAMP,

 document JSONB
);

JSON vs. JSONB

PostgreSQL has two JSON
types: JSON and JSONB (https://www.postgresql.org/docs/current/datatype-json.html). As

outlined in the PostgreSQL documentation, JSONB is a binary representation of the input

document and makes access more efficient. The documentation recommends this type and
so I chose it for my tests.

https://www.postgresql.org/docs/current/datatype-json.html

10/2/22, 5:54 AM JSON in PostgreSQL (Part 1: Setup and Measurement) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/5e365c57048 2/4

Query

The query is a simple insert query and has three variations:

Insert an empty document {} (2 bytes)

Insert a document with 1735 bytes (15 levels deep)

Insert a document with 4503 bytes (31 levels deep)

This is the query inserting an empty document:

INSERT INTO json_schema.json_document
 (document_identifier, time_inserted, document)

 VALUES (gen_random_uuid(), current_timestamp, '{}');

Machine and PostgreSQL database
The pgbench runs are executed on the following machine:

OS Name Microsoft Windows 11 Pro

Version 10.0.22000 Build 22000

Processor Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s),
8 Logical Processor(s)

Installed Physical Memory (RAM) 32.0 GB

Disk Model Samsung SSD 970 EVO Plus 1TB

The database is a standard installation without configuration changes:

select version()

PostgreSQL 14.5, compiled by Visual C++ build 1914, 64-bit

Execution: inserting with pgbench

https://www.postgresql.org/docs/13/pgbench.html

10/2/22, 5:54 AM JSON in PostgreSQL (Part 1: Setup and Measurement) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/5e365c57048 3/4

Preliminaries

Each of the three insert queries is run for 60 seconds, with 15 clients. The results are as
follows (directly copied from the terminal after pgbench completed).

Empty document (size 2 bytes)

pgbench -n -c 15 -r -T 60 -h 127.0.0.1 -U jsondev -f writer_2.sql
json_database

 Password:
 pgbench (14.5)

 transaction type: writer_2.sql
 scaling factor: 1

 query mode: simple
 number of clients: 15

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 1208245
 latency average = 0.738 ms

 initial connection time = 547.437 ms
 tps = 20320.507487 (without initial connection time)

 statement latencies in milliseconds:
 0.575 INSERT INTO json_schema.json_document

(document_identifier, time_inserted,

Document of size 1735 bytes

pgbench -n -c 15 -r -T 60 -h 127.0.0.1 -U jsondev -f writer_1735.sql
json_database

 Password:
 pgbench (14.5)

 transaction type: writer_1735.sql
 scaling factor: 1

 query mode: simple
 number of clients: 15

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 905106
 latency average = 0.984 ms

 initial connection time = 656.384 ms
 tps = 15249.512363 (without initial connection time)

 statement latencies in milliseconds:
 0.779 INSERT INTO json_schema.json_document

(document_identifier, time_inserted,

10/2/22, 5:54 AM JSON in PostgreSQL (Part 1: Setup and Measurement) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/5e365c57048 4/4

Document of size 4503 bytes

pgbench -n -c 15 -r -T 60 -h 127.0.0.1 -U jsondev -f writer_4503.sql
json_database

 Password:
 pgbench (14.5)

 transaction type: writer_4503.sql
 scaling factor: 1

 query mode: simple
 number of clients: 15

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 698619
 latency average = 1.277 ms

 initial connection time = 543.798 ms
 tps = 11748.300928 (without initial connection time)

 statement latencies in milliseconds:
 0.955 INSERT INTO json_schema.json_document

(document_identifier, time_inserted,

Execution — Summary
In summary, the larger the document, the less inserts per second can be achieved. That is
expected as the binary representation JSONB requires parsing and conversation effort that

increases with the size of the document.

TPS for 2 bytes: 20320

TPS for 1735 bytes: 15249

TPS for 4503 bytes: 11748

Summary
As expected, when inserting JSONB documents into a table in PostgreSQL, larger documents

take more time to insert. The results shown here are on a laptop, and measurements on a
PostgreSQL production system follow in a separate blog.

